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1 Introduction

1.1 Background

Weather forecasting is the application of science and technology to predict the conditions of the atmo-
sphere for a given location and time [8], it relates closely to Production activities, social activities and daily
activities. Forecasting weather requires interdisciplinary knowledge. Traditionally, the weather forecasting
models were made by collecting as much data as possible about the current state of the atmosphere (temper-
ature, humidity, rainfall meteorology understanding and wind), this processing can be complicated and only
valid to short term forecasting. We want to build a model making this process more simple and explainable.
Furthermore, we hope to summarize the macro features of the weather, like the trend, seasonality, etc.

This dataset contains daily weather observations from numerous Australian weather stations [1]. These
observations have been taken from the Bureau of Meteorology’s real-time system including the weather
records of all states from 2013 to 2017. We are more interested in how the weather evolves in one specific
area, thus we conducted research on forecasting weather of Sydney by applying multiple methods and
hopefully to generalize the algorithms to other locations’ weather change.

1.2 Objective

Time series models consider the white noise which can be used to simulate the chaotic nature of the
atmosphere in real world. Univariate time series analysis methods(AR/ARMA/ARIMA/SARIMA) only
captures the historical pattern of the time series. The interaction effect of multiple time series will be
introduced to model time series more accurately by implementing the Multivariate Time Series Models
(VAR/VARMA/LSTM ).

A Multivariate Time Series is n time series within the same time frame,that is for any time t, Yt =
(y1,t , · · · ,yn,t). The analysis of Multivariate can be challenging since when modeling y1,t , we need to in-
clude not only prior {y1,t−k,∀k}, but also interactions and latent information within the group of variables
{y2,t−k, · · · ,yn,t−k,∀k}.

The Primary objectives of the report are

• Initialize a VAR model(model selection/fitting/diagnose/forecating)

• Choose order, Diagnose, discuss over-fitting

• Introduce more models to make comparison(LSTM)

• Build an interactive shiny app with prediction model nested.

2 Exploratory Data Analysis

2.1 Original Data Statistics and Manipulation

2.1.1 Pre processing

The original data include 72588 observations of 46 different weather stations recordings, which was
extracted from bureau of the Australia meteorology with date from 2013-03-01 to 2017-06-25. Extract
the recordings of the Sydney weather station and drop the factor variable rainfall which is an indication
for raining(since VAR can only be applied to numerical variables). After processing the data we use the
descriptive statistics to check the distribution of the variable and detect the missing value.
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2.1.2 Describe Statistics

As we can see from the describe statistics table below, the maximal temperature ranges from 11.7 ◦C to
40.9 ◦C with minor skew, minimal temperature ranges from 5 ◦C to 27.1 ◦C have 2 peaks in Sydney. Notice
that the temperatures are exact to 1 decimal and the humidity, pressure and wind speed are integers. Also,
notice there are some missing value in Multivariate Time Series, use the time series imputation to fill in the
missing value.

weather recording of Sydney
9 Variables 1578 Observations

Date
n missing distinct

1578 0 1578

lowest : 2013-03-01 2013-03-02 2013-03-03 2013-03-04 2013-03-05
highest: 2017-06-21 2017-06-22 2017-06-23 2017-06-24 2017-06-25

MaxTemp
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95

1574 4 226 1 23.53 5.017 16.7 17.9 20.3 23.4 26.4 28.8 31.1

lowest : 11.7 13.1 13.4 13.5 13.6, highest: 37.8 38.1 39.2 39.4 40.9

MinTemp
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95

1574 4 192 1 15.13 5.179 7.90 8.90 11.40 15.20 19.00 20.97 21.90

lowest : 5.0 5.4 5.5 5.6 5.8, highest: 25.1 25.4 25.8 26.2 27.1

WindSpeed9am
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95

1572 6 25 0.993 15.13 7.755 4 6 11 15 20 24 28

lowest : 0 2 4 6 7, highest: 37 39 41 44 54

WindSpeed3pm
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95

1573 5 28 0.994 19.47 8.395 7 9 15 19 24 28 31

lowest : 0 2 4 6 7, highest: 43 44 46 48 57

Humidity9am
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95

1574 4 79 1 66.69 17.32 40 48 57 67 78 87 91

lowest : 19 21 22 23 24, highest: 95 96 97 98 100

Humidity3pm
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95

1574 4 85 1 53.27 17.94 27 32 43 54 63 73 83

lowest : 10 11 13 14 16, highest: 92 93 94 95 96
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Pressure9am
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95

1573 5 325 1 1019 8.065 1006 1009 1014 1019 1024 1028 1030

lowest : 996.5 996.7 998.3 998.6 999.1, highest: 1035.8 1036.2 1036.8 1038.8 1039.0

Pressure3pm
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95

1573 5 323 1 1016 8.095 1004 1007 1012 1016 1021 1025 1028

lowest : 994.0 994.2 994.3 994.8 995.4, highest: 1033.7 1034.4 1034.9 1035.5 1036.0

Table 1: describe statistics

2.1.3 Missing Data Inspection and Imputation

Implement the linear Interpolation Imputation algorithms from to impute the missing value[4], which is
for each univariate yi,t time series in the multivariate time series Yt = (y1,t , · · · ,yn,t), use time variable t as
predictor variable and yi,t as the response variable.

S(t) =


C1(t), t0 ≤ t ≤ t1
· · ·

Ci(t), ti−1 < t ≤ ti
· · ·

Cn(t), tn−1 < t ≤ tn
= yt

where there each Ci = ai +bit + cit2 +dit3 (di 6= 0)
This consecutive processing can guarantee the interpolation value most reasonable.

2.1.4 Outlier Removal

Use the time series Outlier Detection to remove the potential outlier for miss recording, impute the outlier
with the replacement generated by the algorithm.

2.2 Visualization and Smoothing

Visualize the final multivariate time series as follows, which is also available in interactive html shiny.changshen
we can see from the figure below that there is no obvious trend in the weather time series of Sydney indicat-
ing the weather system is relative stable in Sydney, more methods and hypothesis test need to be included
to prove whether the time series is stationary, there might be a seasonality in the time series data since it’s a
daily data, rigorous statistical analysis will be included in next section.
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Figure 1: Time series Visualization of variables

2.3 Stationarity

2.3.1 Definition and methodology

Stationary means the mean of the time series wouldn’t change with time and the covariance of yt and ys only
relates to the difference between them.i.e,

EY (t) = EY (t + τ) for all τ ∈ R
CovY (t,s) =CovY (t− s,0) for all t,s ∈ R
E
[
|X(t)|2

]
< ∞ for all t ∈ R

It’s a presumption of most time series models including the main model we use in this report, VAR model,
normally we use Augmented Dickey–Fuller test to test whether a unit root is present in a time series sam-
ple.The alternative hypothesis is that the time series is non-stationary[7].

2.3.2 ADF test and Transformation

We conduct ADF tests to each univatriate with in the multivariate time series separately and acquire the
result as Table 2.

From the result of table 2, we reject the null hypothesis and we can conclude the weather data of Sydney
is stationary in general except for the MinTemp time series. By implementing the common transformation
methods: taking one order difference of lag one, we achieved the multivariate time series with all stationary
variable.
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Variable Dickey-Fuller P-value
MaxTemp -3.9263 0.01267
MinTemp 2.7144 0.2759

WindSpeed9am -8.327 << 0.01
WindSpeed3pm -7.4952 << 0.01
Humidity9am -7.0115 << 0.01
Humidity3pm -8.4925 << 0.01
Pressure9am -7.6682 << 0.01
Pressure3pm 7.9157 << 0.01

Table 2: the ADF test result

2.4 Seasonality

2.4.1 Visualization

This part is a calendar heatmap visualizations to show the possible seasonality for Max Temperature, We
can see the June/July of a year are the months with lowest temperature and December and January of a year
are months with highest temperature .There is not obvious pattern for weekends and weekdays, thus we can
exclude the effect of human activities(commuting/holidays/etc) on temperature. [2],see figure 3.

Calendar Heat Map of Values
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Figure 2: Heat Map of Max Temperature

2.4.2 Confirm the existence of Seasonality and the periodicity

To achieve statistical validity of seasonality, we conduct wo-test using the isSeasonal function, the result
show that each variable has a seasonal pattern.
To determine whether there is multi seasonality, we also attempted the simple spectral analysis, the result
shows that the dominant seasonality source from the year, with the frequency of 365.25.
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Figure 3: Acf and Pacf of Max Temperature

2.5 Correlation Between the the time series

Without consider the lag k correlation between two time series, i,e,Corr(yi,t ,y j, t + k), we implement the
general Pearson correlation to qualify whether the linear correlation between the multiple time series. We
can see from the figure 4 below, there is a relatively strong correlation among Max Temperature and other
variables, in next part, we will use the multivariate time series methods to forecast the max temperature.

Figure 4: Correlation between variables
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3 VAR model

3.1 Methodology

VAR(Vector Autoregression) is a linear model designed for multivariate time series. It’s a generalization
of the AR(Autoregression) model by including the capture of the linear interdependencies among multi-
ple time series[6]. VAR has been applied successfully especially for describing the dynamic behavior of
economic and financial time series and for forecasting[5] due to its flexibility and understandably.

The VAR model for a k dimension time series with order p has the definition as follows:

yt = c+A1yt−1 +A2yt−2 + · · ·+Apyt−p + εt

where the yt−p denotes ith lag of y, yt is the vector {y1,t , · · · ,yk,t},ε is a zero-mean error term has a variance
σ2 and cov(εi,ε j) = 0,∀i 6= j,Ai is a time-invariant (k× k)-matrix.Similar to the AR model, VAR require
stationary time series and the seasonality factor can be include by clarify the frequency or include dummy
variables.
The model can be visualize as below

Figure 5: the diagram of VAR[9]

According to the meteorology knowledge and the simple correlation analysis, It’s appropriate to initial-
ize a VAR model to predict the weather change.

3.2 Include the seasonal dummy

Since in weather time series the seasonality is one of the most important factors, we want to include
the seasonal predictor in the model, the R function provide the parameter season to realize our objective,
however the frequency of the daily data 365 means there will be 365 more predictor variable in the final
model, which will not only make the fitting processing longer but also will generate the high dimension
problem and the over-fitting problem.

Thus, we simplify the frequency by manually creating 11 dummy variables indicating each month, by
doing so, we consider the seasonality and maintain the model as simple as possible. The multivariate time
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series after the dummy coding has 20 variables in total.
The final variables are
{MaxTemp, MinTemp, WindSpeed9am, WindSpeed3pm, Humidity9am, Humidity3pm, Pressure9am,
Pressure3pm, Month 03, Month 04, Month 05, Month 06, Month 07, Month 08, Month 09, Month 10,
Month 11, Month 12, Month 02}

3.3 Determine the order

Employ multiple metrics to determine the order for VAR model, the result list as Table 3, AIC and FPE
tend to choose the model VAR(2), HQ and SC tend to choose model VAR(1), I fitted both models to see
which one has a better prediction result.

metrics 1 2 3 4 5
AIC(n) 27.91 27.90 27.93 27.96 27.98
HQ(n) 28.03 28.11 28.25 28.38 28.51
SC(n) 28.22 28.47 28.77 29.07 29.37
FPE(n) 1.35×1012 1.33×1012 1.38×1012 1.41×1012 1.45×1012

Table 3: The order selection using different metrics

Note:

AIC(n) = lndet
(
Σ̃u(n)

)
+

2
T

nK2

HQ(n) = lndet
(
Σ̃u(n)

)
+

2ln(ln(T ))
T

nK2

SC(n) = lndet
(
Σ̃u(n)

)
+

ln(T )
T

nK2

FPE(n) =
(

T +n∗

T −n∗

)K

det
(
Σ̃u(n)

)
With Σ̃u(n) = T−1

∑
T
t=1 ût û′t and n is the total number of the parameters in each equation[3].

3.4 Modelling

Use the first 1300 observations of each univariate time series as training set the last 278 univariate time
series as the test set. For simplicity, here we only list the model for Max Temp.

3.4.1 Fitting Results

Two potential best VAR models have been listed as follows, all parameters but the wind speed are signif-
icant(***), as appendix 78.

In next part, we’ll conduct the model diagnose to prove its validity and furthermore introduce another
model frame, use the common metric to compare which one has a better performance in Sydney weather
forecasting.
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Variable lag1
MaxTemp.l1 0.320
MinTemp.l1 0.111
WindSpeed9am.l1 −0.021
WindSpeed3pm.l1 −0.002
Humidity9am.l1 −0.017
Humidity3pm.l1 0.022
Pressure9am.l1 0.395
Pressure3pm.l1 −0.333
Month 03.l1 −0.585
Month 04.l1 −2.307
Month 05.l1 −3.295
Month 06.l1 −5.018
Month 07.l1 −4.984
Month 08.l1 −4.530
Month 09.l1 −3.115
Month 10.l1 −1.280
Month 11.l1 −1.332
Month 12.l1 −0.731
Month 02.l1 0.004
const −47.537

Table 4: fitting result for VAR(1)

Variable lag1 lag2
MaxTemp.l1 0.370 −0.099
MinTemp.l1 0.146 0.007
WindSpeed9am.l1 −0.019 −0.021
WindSpeed3pm.l1 −0.002 0.002
Humidity9am.l1 −0.007 −0.003
Humidity3pm.l1 0.026 −0.014
Pressure9am.l1 0.498 0.000
Pressure3pm.l1 −0.379 −0.075
Month 03.l1 −2.715 2.290
Month 04.l1 −1.366 −0.892
Month 05.l1 −3.466 0.338
Month 06.l1 −5.295 0.441
Month 07.l1 −4.453 −0.434
Month 08.l1 −3.508 −0.871
Month 09.l1 −4.941 2.043
Month 10.l1 −2.682 1.530
Month 11.l1 −2.735 1.466
Month 12.l1 −3.237 2.621
Month 02.l1 −0.250 0.347

Table 5: fitting result for VAR(2)

3.5 Model Diagnose

The presumption of the VAR model is that the residuals are White Noises with same variance, which
means the Auto correlations function should be constantly lower than the cutoff values, here we only show
the diagnose result for MaxTemp.

• Test For Correlation
To test for serial correlation we applied a Portmanteau-test(Chi-squared = 2492.5, df = 3249, p-value
= 1). The acf and pacf can also justify the residuals are WN(0,σ2) see the figure 6.

• Test For Heteroscedasticity
To test whether there is heteroscedasticity in residuals, we performed a multivariate ARCH Lagrange-
Multiplier test, result in Chi-squared = 244530, df = 433200, p-value = 1, proved the variances can be
seen as constant in residuals.

• Test For Normality
Conduct the Shapiro–Wilk test get a p-value ¿¿.99

4 More model comparsion

4.1 LSTM

Long Short Term Memory (LSTM) networks are special kind of Recurrent Neural Network (RNN) that
are capable of learning long-term dependencies. In regular RNN small weights are multiplied over and over
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Figure 6: The diagnose plot

through several time steps and the gradients diminish asymptotically to zero-a condition known as vanishing
gradient problem.

LSTM netowrk typically consists of memory blocks, referred to as cells, connected through layers. The
information in the cells is contained in cell state Ct and hidden state ht and it is regulated by mechanisms,
known as gates, through sigmoid and tanh activation functions.

Steps for fitting LSTM model

• Introduce Lag Variables(as predictor variables)

• Separate training and testing set

• Normalize the variables

• Model(define lookback/epoch/batch size,etc)

4.2 Model Performance and Forecasting

4.2.1 Fitting Criterion

With all the models we fitted in below sections, we attempt to predict the Max Temperature with historical
multivariate time series on test set, we can see overall the VAR(2) has a slightly better performance compared
to VAR(1), LSTM model has the worst performance this might cause by the relatively small dataset.

accuracy rmse mae mape mase
VAR(1) 3.856553 2.767140 0.1126411 100.536400
VAR(2) 3.810186 2.735609 0.1112156 99.171780
LSTM(epoch = 50) 4.473483 3.292713 0.1219252 1.230381

Table 6: The performance of 3 models on test set
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4.2.2 Visualization of Forecasting

Visualization result of the three model forecasting, shows the VAR model can perfectly capture the changing
pattern of the time series, while LSTM model might has a problem of lack of fitting we may need to con-
duct more parameter tuning/more epochs to get better performance, while LSTM is excellent in abnormal
detection.

Figure 7: Prediction of three models

5 Discussion

5.1 VAR(Vector AutoRgression)

• Linearity character make it simple in format and can be explained.

• VAR is a powerful algorithm but it has a limitation since it is only applicable to numeric variables.

• Have to manually choose the order p

• Require the stationary presumption (may need transformation)

• Require the residuals be white noise

5.2 LSTM(Long Short Time Memory)

• A black box model can’t be written as VAR

• Parameter tuning/ take long training time and more CPU memory

• More suitable for large scale data

• Can be applied to multiple scenarios like forecasting, classification, anomalously detection

13



References

[1] Australian Government Bureau of Meteorology. URL: http://www.bom.gov.au/climate/dwo/
IDCJDW0000.shtml (visited on 09/30/2019).

[2] Sarang Gupta. Time-Series Calendar Heatmaps. en. Jan. 2019. URL: https://towardsdatascience.
com/time-series-calendar-heatmaps-9f576578fcfe (visited on 11/29/2019).

[3] Edward J Hannan and Barry G Quinn. “The determination of the order of an autoregression”. In:
Journal of the Royal Statistical Society: Series B (Methodological) 41.2 (1979), pp. 190–195.

[4] Steffen Moritz and Thomas Bartz-Beielstein. “imputeTS: Time Series Missing Value Imputation in
R”. en. In: The R Journal 9.1 (2017), pp. 207–218. ISSN: 2073-4859. URL: https://journal.r-
project.org/archive/2017/RJ-2017-009/index.html (visited on 11/28/2019).

[5] multivariatetimeseries. URL: https://faculty.washington.edu/ezivot/econ584/notes/
multivariatetimeseries.pdf (visited on 09/30/2019).

[6] Peter CB Phillips et al. “Fully modified least squares and vector autoregression”. In: ECONOMETRICA-
EVANSTON ILL- 63 (1995), pp. 1023–1023.

[7] SAID E. SAID and DAVID A. DICKEY. “Testing for unit roots in autoregressive-moving average
models of unknown order”. In: Biometrika 71.3 (Dec. 1984), pp. 599–607. ISSN: 0006-3444. DOI:
10.1093/biomet/71.3.599. eprint: http://oup.prod.sis.lan/biomet/article-pdf/71/3/
599/719376/71-3-599.pdf. URL: https://doi.org/10.1093/biomet/71.3.599.

[8] Wikipedia. Weather forecasting. 2019. URL: https://www.wikiwand.com/en/Weather_forecasting
(visited on 09/30/2010).

[9] Jeffrey Yau. Time Series Forecasting using Statistical and Machine Learning Models — PyData NYC
2017. Youtube. 2015. URL: https://www.youtube.com/watch?v=_vQ0W_qXMxk&t=10s.

Appendices
An Appendix of Some Kind

Weather Data in Australia
11 Variables 72588 Observations

Date
n missing distinct

72588 0 1578

lowest : 2013-03-01 2013-03-02 2013-03-03 2013-03-04 2013-03-05
highest: 2017-06-21 2017-06-22 2017-06-23 2017-06-24 2017-06-25

Location
n missing distinct

72588 0 46

lowest : Adelaide Albany Albury AliceSprings BadgerysCreek
highest: Watsonia Williamtown Witchcliffe Wollongong Woomera
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MaxTemp
[2] n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95

70505 2083 493 1 23.45 8.201 12.90 14.54 18.00 23.00 28.60 33.30 35.70

lowest : -4.8 -4.1 -3.8 -3.7 -3.2, highest: 46.6 46.8 46.9 47.0 47.3

MinTemp
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95

70385 2203 378 1 12.25 7.285 1.9 4.1 7.7 12.0 16.8 20.9 23.3

lowest : -8.2 -7.8 -7.6 -7.5 -7.3, highest: 30.7 31.2 31.4 31.8 31.9

Rainfall
[2] n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95

69942 2646 532 0.727 2.241 4.006 0.00 0.00 0.00 0.00 0.60 5.80 12.59

lowest : 0.0 0.1 0.2 0.3 0.4, highest: 216.3 219.6 225.0 240.0 247.2

WindSpeed9am
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95

70158 2430 41 0.995 13.6 9.69 0 4 7 13 19 26 30

lowest : 0 2 4 6 7, highest: 67 69 74 87 130

WindSpeed3pm
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95

68887 3701 40 0.995 18.37 9.746 6 7 11 17 24 30 33

lowest : 0 2 4 6 7, highest: 65 69 72 74 83

Humidity9am
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95

69940 2648 101 1 69.18 21.59 34 44 57 70 84 95 98

lowest : 0 1 2 3 4, highest: 96 97 98 99 100

Humidity3pm
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95

67976 4612 101 1 51.43 23.7 17 23 37 52 65 79 88

lowest : 0 1 2 3 4, highest: 96 97 98 99 100

Pressure9am
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95

62836 9752 517 1 1018 7.997 1006 1009 1013 1018 1023 1027 1030

lowest : 982.0 982.2 982.3 982.9 983.9, highest: 1039.2 1039.3 1039.9 1040.1 1040.3

Pressure3pm
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95

62842 9746 503 1 1015 7.97 1004 1007 1011 1015 1020 1025 1027

lowest : 977.1 978.2 981.4 981.9 982.2, highest: 1036.8 1036.9 1037.0 1037.1 1037.3
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round Estimate Std. Error t value Pr(>| t |)
MaxTemp.l1 0.32 0.04 8.21 0.00
MinTemp.l1 0.11 0.05 2.36 0.02
WindSpeed9am.l1 −0.02 0.01 −1.62 0.11
WindSpeed3pm.l1 0.00 0.01 −0.19 0.85
Humidity9am.l1 −0.02 0.01 −2.21 0.03
Humidity3pm.l1 0.02 0.01 2.68 0.01
Pressure9am.l1 0.40 0.05 8.20 0.00
Pressure3pm.l1 −0.33 0.05 −7.03 0.00
Month03.l1 −0.58 0.38 −1.52 0.13
Month04.l1 −2.31 0.42 −5.55 0.00
Month05.l1 −3.29 0.47 −7.05 0.00
Month06.l1 −5.02 0.52 −9.66 0.00
Month07.l1 −4.98 0.55 −9.05 0.00
Month08.l1 −4.53 0.53 −8.58 0.00
Month09.l1 −3.12 0.47 −6.58 0.00
Month10.l1 −1.28 0.44 −2.92 0.00
Month11.l1 −1.33 0.42 −3.15 0.00
Month12.l1 −0.73 0.41 −1.78 0.07
Month02.l1 0.00 0.42 0.01 0.99
const −47.54 13.61 −3.49 0.00

Table 7: VAR(1) summary
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round Estimate Std. Error t value Pr(>| t |)
MaxTemp.l1 0.37 0.04 8.99 0.00
MinTemp.l1 0.15 0.06 2.42 0.02
WindSpeed9am.l1 −0.02 0.01 −1.42 0.16
WindSpeed3pm.l1 0.00 0.01 −0.16 0.87
Humidity9am.l1 −0.01 0.01 −0.90 0.37
Humidity3pm.l1 0.03 0.01 3.17 0.00
Pressure9am.l1 0.50 0.07 7.62 0.00
Pressure3pm.l1 −0.38 0.05 −7.35 0.00
Month03.l1 −2.71 2.07 −1.31 0.19
Month04.l1 −1.37 2.32 −0.59 0.56
Month05.l1 −3.47 2.50 −1.39 0.17
Month06.l1 −5.30 2.60 −2.04 0.04
Month07.l1 −4.45 2.66 −1.68 0.09
Month08.l1 −3.51 2.64 −1.33 0.18
Month09.l1 −4.94 2.57 −1.92 0.05
Month10.l1 −2.68 2.38 −1.13 0.26
Month11.l1 −2.73 2.07 −1.32 0.19
Month12.l1 −3.24 1.54 −2.10 0.04
Month02.l1 −0.25 1.55 −0.16 0.87
MaxTemp.l2 −0.10 0.05 −2.19 0.03
MinTemp.l2 0.01 0.05 0.13 0.90
WindSpeed9am.l2 −0.02 0.01 −1.58 0.11
WindSpeed3pm.l2 0.00 0.01 0.20 0.84
Humidity9am.l2 0.00 0.01 −0.36 0.72
Humidity3pm.l2 −0.01 0.01 −1.55 0.12
Pressure9am.l2 0.00 0.06 0.01 0.99
Pressure3pm.l2 −0.07 0.07 −1.06 0.29
Month03.l2 2.29 2.07 1.11 0.27
Month04.l2 −0.89 2.32 −0.38 0.70
Month05.l2 0.34 2.50 0.14 0.89
Month06.l2 0.44 2.60 0.17 0.87
Month07.l2 −0.43 2.64 −0.16 0.87
Month08.l2 −0.87 2.64 −0.33 0.74
Month09.l2 2.04 2.57 0.79 0.43
Month10.l2 1.53 2.39 0.64 0.52
Month11.l2 1.47 2.08 0.71 0.48
Month12.l2 2.62 1.55 1.70 0.09
Month02.l2 0.35 1.55 0.22 0.82
const −28.54 15.43 −1.85 0.06

Table 8: VAR(2) summary
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